

MATLAB

UNIVERSITÀ DEGLI STUDI DI SALERNO

Fondamenti di Informatica

Introduzione alla programmazione in MATLAB: Parte 1 (M-File e Input/Output)

Prof. Christian Esposito

Corso di Laurea in Ingegneria Meccanica e Gestionale (Classe I)

A.A. 2017/18

- M-File
 - M-File Script
 - M-File Function
- Input/Output

M-File - 1/2

- Finora abbiamo inserito comandi, istruzioni e funzioni MATLAB direttamente mediante la Command Window
 - Tuttavia, ciò può causare disagio, specialmente quando comandi, istruzioni e funzioni devono essere rieseguiti più volte
 - Magari in più sessioni di lavoro MATLAB distinte
 - Con leggere modifiche
 - Etc

M-File - 1/2

- Finora abbiamo inserito comandi, istruzioni e funzioni MATLAB direttamente mediante la **Command Window**
 - Tuttavia, ciò può causare disagio, specialmente quando comandi, istruzioni e funzioni devono essere rieseguiti più volte
 - Magari in più sessioni di lavoro MATLAB distinte
 - Con leggere modifiche
 - Etc
 - MATLAB permette di risolvere questi problemi attraverso l'utilizzo degli *M-File*

M-File -2/2

- MATLAB consente di memorizzare una sequenza di istruzioni in un file, detto *M-File*
- In particolare, un M-File può essere di due tipi
 - M-File Script: contiene una sequenza di comandi o istruzioni MATLAB, nella stessa forma in cui vengono scritti usando Command Window
 - *M-File Function*: contiene nuove funzioni MATLAB definite dall'utente. In generale, tali funzioni accettano dati in input e restituiscono dati di output, come risultato della loro elaborazione

M-File Script – 1/9

- In MATLAB è possibile <u>rieseguire comandi, istruzioni e funzioni</u> mediante i seguenti passi
 - Creare un file (che conterrà la lista di comandi, istruzioni e funzioni)
 - <u>Salvare</u> il file
 - *Eseguire* il file
- Un file contenente una lista di comandi/istruzioni/funzioni MATLAB viene detto
 - M-File Script
- Ogni M-file Script ha l'estensione .m

M-File Script – 2/9

• Più precisamente, un M-file Script è

- Un file esterno contenente sequenze di istruzioni MATLAB
 - Digitando il nome del file, comandi/istruzioni/funzioni prese in input da MATLAB sono ottenute direttamente da tale file
- Utile per l'automazione di blocchi di comandi/istruzioni/funzioni MATLAB
 - Come ad esempio calcoli che è necessario eseguire più volte (manualmente) dalla Command Window

M-File Script – 3/9

• Esempio

- Creare uno script (di nome sommamat.m) che
 - Effettua la somma di due matrici A e B
 - Salva il risultato nella matrice C ed infine lo stampa
- A e B sono definite come segue

•
$$A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}, B = \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix}$$

- **SOLUZIONE** MATLAB per sommare A e B
 - Tale soluzione andrà inserita nel file sommamat.m

```
A=[2 3;4 5];
B=[6 7; 8 9];
C=A+B
```

M-File Script – 4/9

• Creare uno script con MATLAB

File	Edit	Debug	Parallel	Desktop	Win	dow	Help			
	New				>	So	ript		Ctrl+N	f
	Open			Ctrl+	0	Fu	unction			Γ
	Close C	ommand	Window	Ctrl+	w	C	lass			v
	Import	Data				Fi	gure			в
	Save We	orksnace /	٨e	Ctrl+	<u>د</u>	Va	ariable			Г
	Save we	лкэрасси	-3	curr	-	Μ	lodel			Ŀ
	Set Path					G	UI			Ŀ
	Preferer	nces				D	eployme	ent Project		
	Page Se	tup								
	Print			Ctrl+	Р					
	Print Se	lection								
	101.1									

M-File Script – 4/9 (Versioni più recenti di MATLAB)

• Creare uno script con MATLAB

M-File Script – 4/9 (Versioni più recenti di MATLAB)

• Creare uno script con MATLAB

M-File Script – 4/9 (Utilizzando la Command Window)

• Creare uno script con MATLAB utilizzando il comando edit

Command Window	📝 Editor – untitled7				
>> edit	untitled7 🗙 🕂				
$f_{\frac{x}{2}} >>$	1				

M-File Script – 5/9

- Editor di *M-File Script*
- Inserire le istruzioni MATLAB mediante l'**Editor** di *M-file Script*

1 📝	Editor - Untitle	d2*											×
<u>F</u> ile	<u>E</u> dit <u>T</u> ext	<u>G</u> o	<u>C</u> ell	T <u>o</u> ols	De <u>b</u> ug	<u>D</u> esktop	<u>W</u> indow	<u>H</u> elp					XSK
: 🛅	🗃 🛃 🐰	h ()	6 🦉	1 - 🗉	M 🖛 🔿	f0 돈	- 🖷	🗶 🖷	1 1 1	繪 .	$\sim f_{x}$	
; += =	Ç= - 1.0	+	÷	1.1	× %	x* 0							
1	A=[2 3	;4 5]	;										
2	B=[6 7	; 8 9	9];										
3	C=A+B												-

M-File Script – 6/9

• **Salvare** l'*M-File Script* (il .m viene automaticamente aggiunto)

📝 Editor - Untitled2*								
<u>F</u> ile	<u>E</u> dit	<u>T</u> ext	<u>G</u> o	<u>C</u> ell	T <u>o</u> ols	De <u>b</u> ug	<u>D</u> es	
	<u>N</u> ew					>	A •	
	<u>O</u> pen					Ctrl+O	×*	
	Open S	election	1			Ctrl+D		
	Close Editor							
	Close							
	<u>C</u> lose U	Ctrl+W						
	<u>S</u> ave	Ctrl+S						
	Save <u>A</u> s							
	Sa <u>v</u> e All							
	Save Fil	e and P	u <u>b</u> lish	1				
	P <u>u</u> blish	Config	uratio	n for U	ntitled2	>		
	Sou <u>r</u> ce	Control				>		

M-File Script – 6/9 (Versioni più recenti di MATLAB)

• **Salvare** l'*M-File Script* (il .m viene automaticamente aggiunto)

单 MA	TLAB	Window	Help
НОМЕ		PLOTS	APPS
🕂 🖸		📮 Find Fil	es 🔶
New Oper	n Save	Compa E	re 🔻 🖓
• •	•	📥 Print 🕚	•Q
4		Save	₩S NA
Current F		Save As	企業S
Name	A 🗳	Save All	
primo	oS I.r 1.mat	Save Copy A	s

M-File Script – 6/9 (Versioni più recenti di MATLAB)

• **Salvare** I'*M-File Script* (il .m viene automaticamente aggiunto)

New	Open	Save FILE	G Find Files E Compare ▼ Print ▼	← ↔ Go To ← ← Find ← NAVIGATE	Insert 🛃 fx Comment % % Indent 🛐 🛃 EDIT	; [¶] ▼ 3 %]] []	Breakpoints	Run
(n n)	 • 	2	/ ► Users ►	arccas ► Do	cuments 🕨 MATL	AB		
Curre	ent Fol Name ▲ primoS	der ave		© Selec	Editor – u Editor – u t File for Save As	ntitled3*		
	prova. prova1	.ma	Save As: Tags:	sommamat			~	
			Where:	MATLAB		\$		
			Fo	rmat: MATLA	.B Code files (*.m)	\$		
						Cance	Save	

M-File Script – 6/9

• **Salvare** l'*M-File Script* (il .m viene automaticamente aggiunto)

M-File Script – 7/9

- Eseguire l'*M-File Script* mediante la Command Window
 - L'M-File Script deve essere memorizzato nella Current Directory
 - Per eseguirlo è sufficiente digitare nella Command Window il nome del file script (senza estensione .m)

• Esempio

• Supponiamo di aver memorizzato il file script dell'esempio precedente nella Current Directory, con il nome di **sommamat.m**

>> sommamat					
C =					
8 12	10 14				

Current Folder	Workspace
🛅 📷 🗃 🖬 😽 s	itac <u>k</u> : 🏼 🎶 Select data to
Name 📥	Value
A	[2,3;4,5]
\rm В	[6,7;8,9]
🗄 C	[8,10;12,14]

M-File Script – 8/9

- Gli *M-File Script* possono operare su variabili esistenti nel Workspace, oppure possono crearne di nuove
 - Tutte le variabili che che vengono create da tali script rimangono nel Workspace e possono essere usate per effettuare ulteriori calcoli

Script per calcolare la media di 3 numeri

Workspace		$\overline{\mathbf{v}}$			
Name 🔺	Value				
Workspace					

M-File Script – 8/9

- Gli *M-File Script* possono operare su variabili esistenti nel Workspace, oppure possono crearne di nuove
 - Tutte le variabili che che vengono create da tali script rimangono nel Workspace e possono essere usate per effettuare ulteriori calcoli

- Gli *M-File Script* possono operare su variabili esistenti nel Workspace, oppure possono crearne di nuove
 - Tutte le variabili che che vengono create da tali script rimangono nel Workspace e possono essere usate per effettuare ulteriori calcoli

M-File Script – 8/9

- Gli *M-File Script* possono operare su variabili esistenti nel Workspace, oppure possono crearne di nuove
 - Tutte le variabili che che vengono create da tali script rimangono nel Workspace e possono essere usate per effettuare ulteriori calcoli

Script per calcolare la media di 3 numeri

Workspace		$\overline{\mathbf{O}}$			
Name 🔺	Value				
Workspace					

M-File Script – 8/9

- Gli *M-File Script* possono operare su variabili esistenti nel Workspace, oppure possono crearne di nuove
 - Tutte le variabili che che vengono create da tali script rimangono nel Workspace e possono essere usate per effettuare ulteriori calcoli

M-File Script – 9/9

• M-File Script

• VANTAGGI:

• È possibile modificare (se necessario) comandi/istruzioni/funzioni nel file una sola volta, ed eseguire tale file (script) più volte

• SVANTAGGI:

- Tutte le variabili create all'interno dello script sono aggiunte al Workspace, e questo può portare a problemi indesiderati
 - Ad Esempio
 - Alcune variabili già esistenti nel Workspace vengono sovrascritte
 - Lo stato di alcune variabili già esistenti nel Workspace viene modificato
 - Etc

Commenti in MATLAB – 1/3

- Gli M-File Script (ma anche gli M-File Function) possono contenere qualsiasi serie di istruzioni/comandi/funzioni MATLAB, ma anche <u>commenti</u>
 - Qualsiasi testo che segue un segno di percentuale (%) su una data linea è detto testo di <u>commento</u>
 - <u>I commenti</u>
 - Possono apparire
 - Su linee distinte rispetto alle istruzioni MATLAB
 - Alla fine di una istruzione MATLAB
 - Non vengono processati da MATLAB
 - L'aggiunta di commenti è essenziale per la comprensione di programmi costituiti da un gran numero di istruzioni
 - A maggior ragione se il programma deve essere compreso da persone diverse dal suo autore

```
Esercizio1 Esercitazione2.m 💥 🕂
    % Esercizio 1 dell'Esercitazione 2
    % matrice
    format bank % per notazione con 2 cifre decimali (maggiori dettagli in seguito)
    m = [55.506.506.25]
        40 43 37 50 45
        1000 1100 1000 1200 1100 ];
    % a)
    guadagno_operaio_settimana = m(1,:) .* m(2,:)
    % b)
    guadagno_operai_settimana = sum(guadagno_operaio_settimana)
    % c)
    pezzi_prodotti = sum(m(3,:))
    % d)
    costo_medio_pezzo = guadagno_operai_settimana / pezzi_prodotti
    % e)
    ore_totali = sum(m(2,:));
    ore_medie_pezzo = ore_totali / pezzi_prodotti
    % f)
    format short % maggiori dettagli in seguito
    efficienza_operai=m(2,:) ./ m(3,:)
    operaio_piu_efficiente = max(efficienza_operai)
    operaio_meno_efficiente = min(efficienza_operai)
                                                                                   26/88
```

Commenti in MATLAB – 2/3

Commenti in MATLAB – 3/3

Funzioni – 1/4

- Una funzione è un segmento (blocco) autonomo di programma che esegue un compito specifico
- In termini più formali, una funzione (detta anche subroutine, metodo, procedura o sottoprogramma) è una porzione di codice all'interno di un programma più ampio, che svolge un compito specifico e può essere relativamente indipendente dal resto del codice
- Le funzioni rappresentano le basi per costruire programmi più complessi

Input

Funzioni – 2/4

 Una funzione è un segmento (blocco) autonomo di programma che esegue un compito specifico

Funzioni – 2/4

 Una funzione è un segmento (blocco) autonomo di programma che esegue un compito specifico

- Una funzione può
 - Accettare uno o più (ma anche zero) argomenti in input
 - Restituire uno o più (ma anche zero) argomenti in output

Funzioni – 3/4

- Una funzione può essere vista come una sorta di *"black box"*
 - Il suo codice sorgente ed il suo Workspace (stato) risultano nascosti al chiamante
 - Una funzione comunica con il "mondo esterno" soltanto usando le proprie variabili di input e output

Funzioni – 4/4

• Perché usare le funzioni?

• Riusabilità

 Una funzione può essere usata più volte, senza necessità di riscrivere ogni volta il codice sorgente (istruzioni) che essa contiene

• Leggibilità del codice

- Un programma che risolve un problema complesso, può essere suddiviso più sotto-programmi (funzioni), ognuno dei quali risolve un sotto-problema (*divide-et-impera*)
- Gestibilità del codice

M-File Function - 1/11

- MATLAB mette già a disposizione diverse funzioni, dette funzioni built-in
 - Alcune delle quali sono state utilizzate nelle lezioni precedenti
 - Ad esempio **max**, **sum**, **sqrt**, etc
- Inoltre, MATLAB permette all'utente di creare proprie funzioni, dette funzioni <u>user-defined</u>

M-File Function -2/11

• Vediamo come creare in MATLAB una funzione *user-defined*

• <u>Sintassi</u> per creare una *funzione* definita dall'utente


```
function [variabili di output] = nome_funzione(variabili di input)
      <corpo_funzione>
end
```

- Le variabili di output sono quelle i cui valori vengono calcolati dalla funzione, utilizzando i valori delle variabili di input
 - Le **variabili di output** sono racchiuse tra <u>parentesi quadre</u> (che sono facoltative quando c'è un solo output)
- Le **variabili di input** devono essere racchiuse tra <u>parentesi</u> <u>tonde</u>
- La parola **function** nella riga di definizione della funzione deve essere scritta in <u>lettere minuscole</u>

• Vediamo come creare in MATLAB una funzione *user-defined*

• <u>Sintassi</u> per creare una *funzione* definita dall'utente

```
function [out1,out2,...,outN] = nome_funzione(in1,in2,...,inM)
      <corpo_funzione>
end
```

- Vediamo come creare in MATLAB una funzione *user-defined*
- Sintassi per creare una funzione definita dall'utente

- Vediamo come creare in MATLAB una funzione *user-defined*
- <u>Sintassi</u> per creare una *funzione* definita dall'utente

- Vediamo come creare in MATLAB una funzione *user-defined*
- <u>Sintassi</u> per creare una *funzione* definita dall'utente

- Vediamo come creare in MATLAB una funzione *user-defined*
- Sintassi per creare una funzione definita dall'utente

- Vediamo come creare in MATLAB una funzione *user-defined*
- <u>Sintassi</u> per creare una *funzione* definita dall'utente

• *Esempio 1* (Area Triangolo Equilatero)

```
function area = area triangolo equilatero(lato)
```

```
area = sqrt(3)/4 * lato^2;
```

end

Definizione (o dichiarazione) della funzione

• *Esempio 1* (Area Triangolo Equilatero)

Definizione (o dichiarazione) della funzione

• *Esempio 1* (Area Triangolo Equilatero)

Definizione (o dichiarazione) della funzione

<u>Esempio 1</u> (Area Triangolo Equilatero)

Definizione (o dichiarazione) della funzione

N.B. I nomi delle variabili di output presenti nella definizione della funzione devono essere identici a quelli delle variabili in cui sono memorizzati i valori (calcolati) che la funzione deve restituire come output

• *Esempio 1* (Area Triangolo Equilatero – Con Commenti)

```
function area = area triangolo equilatero(lato)
```

%La funzione prende in input la lunghezza di un lato e %restituisce in output l'area del triangolo

%L'area del triangolo equilatero può essere calcolata %dividendo per 4 la radice quadrata di 3; il risultato %ottenuto da tale divisione deve essere moltiplicato per %la dimensione del lato, elevata al quadrato

```
area = sqrt(3)/4 * lato^2;
```

end

• Esempio 2 (Area Sfera)

function area = area sfera(raggio)

```
area = 4 * pi * raggio^2;
```

end

Definizione (o dichiarazione) della funzione

• *Esempio 3* (Area e Volume Sfera)

```
function [area, volume] = area volume sfera(raggio)
```

```
area = area_sfera(raggio);
volume = 4/3 * pi * raggio^3;
```

end

Definizione (o dichiarazione) della funzione

• *Esempio 3* (Area e Volume Sfera)

Definizione (o dichiarazione) della funzione

• *Esempio 3* (Area e Volume Sfera)

Definizione (o dichiarazione) della funzione

N.B. I nomi delle variabili di output presenti nella definizione della funzione devono essere identici a quelli delle variabili in cui sono memorizzati i valori (calcolati) che la funzione deve restituire come output

• *Esempio 3* (Area e Volume Sfera)

```
function [area, volume] = area_volume_sfera(raggio)
area = area_sfera(raggio); → invocazione a un'altra funzione
volume = 4/3 * pi * raggio^3;
```

end

- <u>Osservazione</u>: all'interno di una funzione è possibile invocare una o più funzioni user-defined e/o funzioni built-in di MATLAB
- **NOTA**: Le funzioni *user-defined*, per poter essere invocate, devono essere state precedentemente memorizzate (salvate) nel relativo *M*-*File Function*
 - Vediamo come...

• Le funzioni *user-defined*, per poter essere invocate, devono essere state precedentemente memorizzate (salvate) nel relativo *M-File Function*

function [out1,out2,...,outN] = nome_funzione(in1,in2,...,inM)
 <corpo_funzione>
end

• Salvare una funzione user-defined in un M-File Function

- Il nome della funzione (nome_funzione) deve essere uguale al nome del file in cui sarà salvata tale funzione
- Ad es., se il nome della funzione è media, tale funzione deve essere salvata nel file media.m (N.B. MATLAB suggerisce già il nome corretto da dare alla funzione)

M-File Fur

 Le funzioni user-def state precedenteme Function

function [out1,out2,...
 <corpo_funzione>
end

1ATLAB 7.10.0 (R2010a)					
<u>E</u> dit De <u>b</u> ug <u>P</u> arallel	<u>D</u> esktop <u>W</u> ind	low <u>H</u> elp			
<u>N</u> ew	>	Scr <u>i</u> pt	Ctrl+N		
<u>O</u> pen	Ctrl+O	Fu <u>n</u> ction			
<u>C</u> lose Command Window	Ctrl+W	<u>C</u> lass			
<u>I</u> mport Data Save <u>W</u> orkspace As	Ctrl+S	<u>F</u> igure <u>V</u> ariable Model			
Set Pat <u>h</u> Pre <u>f</u> erences		<u>G</u> UI Deployment Pro	ject		
Page Setup <u>P</u> rint Prin <u>t</u> Selection	Ctrl+P				
1 C:\s\MATLAB\sommam	iat.m				

• Salvare una funzione *user-defined* in un *M-File Function*

File

- Il nome della funzione (nome_funzione) deve essere uguale al nome del file in cui sarà salvata tale funzione
- Ad es., se il nome della funzione è media, tale funzione deve essere salvata nel file media.m (N.B. MATLAB suggerisce già il nome corretto da dare alla funzione)

M-File Fur

 Le funzioni user-def state precedenteme Function

function [out1,out2,...
 <corpo_funzione>
end

IATLAB 7.10.0 (R2010a)								
<u>E</u> dit De <u>b</u> ug <u>P</u> arallel <u>D</u> esl	ktop	<u>W</u> ir	ndow	,	<u>H</u> elp			
New		>		Scr	<u>i</u> pt		Ctrl	+N
<u>O</u> pen	Ctrl+	0		Fu	nction	l .		
Close Command Window	Ctrl+	w		<u>C</u> la	SS			
<u>I</u> mport Data Save <u>W</u> orkspace As	ort Data e <u>W</u> orkspace As Ctrl+S			<u>F</u> igure <u>V</u> ariable Model				
Set Pat <u>h</u>				<u>G</u> U	I			
Pre <u>f</u> erences				De	ploym	ient Proje	ect	
Page Setup <u>P</u> rint Prin <u>t</u> Selection	Ctrl+	Р						
1 C:\s\MATLAB\sommamat.m								

• Salvare una funzione *user-defined* in un *M-File Function*

File

- Il nome della funzione (nome_funzione) deve essere uguale al nome del file in cui sarà salvata tale funzione
- Ad es., se il nome della funzione è media, tale funzione deve essere salvata nel file media.m (N.B. MATLAB suggerisce già il nome corretto da dare alla funzione)

- Il nome della funzione (nome_funzione) deve essere uguale al nome del file in cui sarà salvata tale funzione
- Ad es., se il nome della funzione è media, tale funzione deve essere salvata nel file media.m (N.B. MATLAB suggerisce già il nome corretto da dare alla funzione)

- Un *M-file Function* ha estensione **.m** ed il suo contenuto deve iniziare con la parola chiave function
 - Seguita da eventuali parametri di input e di output
- Ogni *M-file Function* ha un proprio workspace, separato dal Workspace mostrato in MATLAB
 - Tutte le variabili all'interno dell'*M-file Function* vengono dette <u>"locali"</u> ad esso
 - Esistono soltanto all'interno della funzione stessa
 - Non vengono viste dall'ambiente MATLAB o da altre eventuali *M-file Function* chiamanti

 Una volta memorizzata la funzione user-defined nel relativo M-File Function (nella Current Directory), tale funzione può essere invocata dalla Command Window di MATLAB

Current Folder 🍽 🗖 🛪 🗙 Workspace	Command Window
◆ → 🔤 « Documents → MATLAB 🔹 🔎 🌣・	<pre>>> [area, volume] = area_volume_sfera(5)</pre>
Name ▲ i area_sfera.m i area_volume_sfera.m diary	area = 314.1593
	volume =
	523.5988
	fx >>

 Dopo che è stata creata (dichiarata), una funzione può essere utilizzata (invocata), fornendogli in input gli opportuni parametri

```
function area = area_triangolo_equilatero(lato)
area = sqrt(3)/4 * lato^2;
end
```

Dichiarazione

• Dopo che è stata creata (dichiarata), una funzione può essere utilizzata (invocata), fornendogli in input gli opportuni parametri

• <u>N.B. È importante notare la differenza tra definizione (Dichiarazione) della</u> <u>funzione ed uso (Invocazione) della funzione stessa</u>

```
function area = area_triangolo_equilatero(lato)
area = sqrt(3)/4 * lato^2;
end
```

Dichiarazione

- I valori restituiti in output da una funzione possono essere assegnati a variabili
 - Che saranno visibili nel Workspace di MATLAB

- I valori restituiti in output da una funzione possono essere assegnati a variabili
 - Che saranno visibili nel Workspace di MATLAB

```
>> [area, volume] = area_volume_sfera(6)
area =
   452.3893
volume =
   904.7787
```

Workspace	
Name 🔺	Value
Η area	452.3893
Η volume	904.7787

Parametri formali

• I parametri formali sono quelli indicati in fase di dichiarazione della funzione

• Esempio

function [area, volume] = area_volume_sfera(raggio)
.
.
.
end

• **raggio** *è un parametro formale di input della funzione* area_volume_sfera

<u>Parametri attuali</u>

• I parametri attuali sono quelli indicati in fase di invocazione della funzione

• Esempio

```
.
.
area = area_sfera(raggio);
.
.
.
```

 In questo caso, <u>raggio</u> è un parametro attuale di input della funzione invocata area_sfera

- I parametri possono essere di qualsiasi tipo
 - Array, matrici, scalari, etc..
- I parametri attuali vengono associati a quelli formali tenendo conto della posizione
 - Il primo parametro attuale viene associato al primo parametro formale, il secondo attuale al secondo formale, etc..
- È necessario che l'invocazione a una funzione avvenga con un numero di parametri attuali uguale al numero dei parametri formali

Dichiarazione

Input/Output – 1/6

• MATLAB fornisce vari comandi che permettono di ottenere l'input degli utenti e formattare i dati di output (i risultati ottenuti eseguendo i comandi di MATLAB)
• Con il comando **input** è possibile ottenere un input da parte dell'utente tramite il prompt del Command Window

• Esempio

>> x = input('Inserisci x: ')

• Il comando **input** visualizza un testo sullo schermo, aspetta che l'utente digiti qualcosa e poi memorizza l'input nella variabile specificata

• Con il comando **input** è possibile ottenere un input da parte dell'utente tramite il prompt del Command Window

• Con il comando **input** è possibile ottenere un input da parte dell'utente tramite il prompt del Command Window

• Esempio

• Con il comando **input** è possibile ottenere un input da parte dell'utente tramite il prompt del Command Window

• Con il comando **input** è possibile ottenere un input da parte dell'utente tramite il prompt del Command Window

• Esempio 2

```
>> a = input('a: ');
a: 125
>> b = input('b: ');
b: 270
>> c = input('c: ');
c: 391
>> average = (a+b+c)/3
average =
262
```

Command Window

>> help input

input Prompt for user input.

RESULT = **input**(PROMPT) displays the PROMPT string on the screen, waits for input from the keyboard, evaluates any expressions in the input, and returns the value in RESULT. To evaluate expressions, **input** accesses variables in the current workspace. If you press the return key without entering anything, **input** returns an empty matrix.

STR = input(PROMPT,'s') returns the entered text as a MATLAB string, without evaluating expressions.

Come al solito, maggiori informazioni sul comando possono essere ottenute utilizzando il comando help

- Generalmente vengono utilizzati due modi per mostrare l'output in MATLAB
 - disp
 - fprintf
- Il comando disp ha il vantaggio di essere molto semplice da utilizzare, ma fornisce un controllo limitato su ciò che può essere mostrato in output
- Il comando fprintf è estremamente completo nella gestione dell'output, ma non è di facile utilizzo
 - Possibilità di specificare numerose opzioni riguardanti come verrà visualizzato l'output (maggiori informazioni digitando il comando help fprintf)

• Esempi di utilizzo del comando disp

>> disp('stringa')
stringa

```
>> disp(['stringa1','stringa2','stringa3'])
stringa1stringa2stringa3
```

```
>> disp(['stringa ', num2str(10)])
stringa 10
```

• Esempi di utilizzo del comando disp

```
>> disp('stringa')
stringa
```

```
>> disp(['stringa1','stringa2','stringa3'])
stringa1stringa2stringa3
```


Esempio 1 (Utilizzo comando disp)

```
>> a = 46; b = 35; c = 100;
>> disp('Stamperò il valore di a e la somma b + c')
Stamperò il valore di a e la somma b + c
>> disp(['Il valore della variabile a è :', num2str(a)])
Il valore della variabile a è :46
>> disp(['La somma b + c è:', num2str(b+c)])
La somma b + c è:135
```

- È possibile decidere il formato di visualizzazione dei risultati prodotti da MATLAB, mediante il comando **format**
 - Il comando **format** determina l'aspetto dei numeri sullo schermo
- MATLAB utilizza molte cifre significative nei suoi calcoli, ma raramente servono tutte
- Il formato standard di visualizzazione di MATLAB utilizza quattro cifre decimali

- È possibile decidere il formato di visualizzazione del risultato tramite il comando format
 - format short: 4 cifre decimali (formato standard o di *default*); Ad es., 13.6745
 - **format** long: 16 cifre. Ad es., 17.27484029463547
 - format short e: 5 cifre (4 decimali) più l'esponente. Ad es., 6.3792e+03
 - format long e: 16 cifre (15 decimali) più l'esponente. Ad es., 6.379243784781294e-04
 - format bank: 2 cifre decimali. Ad es., 126.73
 - format +: Positivo, negativo o zero. Ad es., +
 - **format rat**: Approssimazione razionale. Ad es., 43/7
 - **format** compact: Elimina le righe vuote
 - format loose: Annulla l'effetto di format compact

- È possibile decidere il formato di visualizzazione del risultato tramite il comando **format**
 - **format short**: 4 cifre decimali (formato standard o di *default*); Ad es., 13.6745

format long: 16 cifre. Ad es., 17.27484029463547

- **format short e**: 5 cifre (4 decimali) più l'esponente. Ad es., 6.3792e+03
- **format long e**: 16 cifre (15 decimali) più l'esponente. Ad es., 6.379243784781294e-04

format bank: 2 cifre decimali. Ad es., 126.73

N.B. In questo contesto e non rappresenta il numero e di *Nepero*, che è alla base dei logaritmi naturali, ma l'iniziale della parola "esponente"

format compact: Elimina le righe vuote
format loose: Annulla l'effetto di format compact

Riferimenti

- Capitolo 1
 - Paragrafo 1 (Comandi di formattazione)
 - Paragrafi 4 [File script ed Editor/Debugger] e 5 [La guida di MATLAB]
- Capitolo 3
 - Paragrafi 1 [Funzioni matematiche di base] e 2 [Funzioni definite dall'utente, fino a Varianti nella chiamata di una funzione (incluso)]